A New Family of Preconditioners for Domain Decomposition
نویسنده
چکیده
منابع مشابه
Parallel Triangular Solvers on GPU
In this paper, we investigate GPU based parallel triangular solvers systematically. The parallel triangular solvers are fundamental to incomplete LU factorization family preconditioners and algebraic multigrid solvers. We develop a new matrix format suitable for GPU devices. Parallel lower triangular solvers and upper triangular solvers are developed for this new data structure. With these solv...
متن کاملDomain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions
In this paper, we present several domain decomposition preconditioners for high-order Spectral Nédélec element discretizations for a Maxwell model problem in H(curl), in particular overlapping Schwarz preconditioners and Balancing Neumann-Neumann preconditioners. For an efficient and fast implementation of these preconditioners, fast matrix-vector products and direct solvers for problems posed ...
متن کاملAnalysis of non-overlapping domain decomposition algorithms with inexact solves
In this paper we construct and analyze new non-overlapping domain decomposition preconditioners for the solution of second-order elliptic and parabolic boundary value problems. The preconditioners are developed using uniform preconditioners on the subdomains instead of exact solves. They exhibit the same asymptotic condition number growth as the corresponding preconditioners with exact subdomai...
متن کاملRobust Two-Level Lower-Order Preconditioners for a Higher-Order Stokes Discretization with Highly Discontinuous Viscosities
The main goal of this paper is to present new robust and scalable preconditioned conjugate gradient algorithms for solving Stokes equations with large viscosities jumps across subregion interfaces and discretized on non-structured meshes. The proposed algorithms do not require the construction of a coarse mesh and avoid expensive communications between coarse and fine levels. The algorithms bel...
متن کاملBlock Diagonal Preconditioners for the Schur Complement Method Block Diagonal Preconditioners for the Schur Complement Method
We present numerical methods for solving systems of linear equations originated from the discretisation of two-dimensional elliptic partial diierential equations. We are interested in diierential equations that describe heterogeneous and anisotropic phenomena. We use a nonoverlapping domain decomposition method for solving the linear systems. We describe new local preconditioners for the interf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 16 شماره
صفحات -
تاریخ انتشار 1995